Honors Mechanics
PHYS 111
fall, freshman year
Units Dimensions Vectors Examples Notation Unit vectors, vector components Multiplication by a scalar Vector Addition Properties Vector Multiplication Dot product Vector differentiation Properties General kinematic equations Uniform circular motion Newton’s Laws Newton’s first law Newton’s second law Newton’s third law Phenomenological forces Centripetal acceleration Geostationary orbit Whirling rope Pulleys Drag forces Simple harmonic motion Gravity Momentum Impulse Rockets Energy Conservative forces Conservation of mechanical energy Angular Momentum Mechanics : study of a system of particles interacting with each other and/or the environment.
Newtonian mechanics applicable when:
things not too fast (compared to c c c )
v c ≪ 1 \frac{v}{c} \ll 1 c v ≪ 1
things not too small (compared to λ d b \lambda_{db} λ d b )
L λ d b ≫ 1 \frac{L}{\lambda_{db}} \gg 1 λ d b L ≫ 1
gravity not too strong
G M L c 2 ≪ 1 \frac{GM}{Lc^2} \ll 1 L c 2 G M ≪ 1
space
3-dimensional : 3 coordinates necessary to specify the position of a particle
euclidean : euclid’s axioms satisfied
time
universal time : time runs the same way for all bodies regardless of their properties
Units
We describe the magnitude of physical quantities using standard units .
Dimensions
Combinations of powers of length, mass, time.
[ length ] = L [\textrm{length}] = L [ length ] = L
[ velocity ] = L T − 1 [\textrm{velocity}] = LT^{-1} [ velocity ] = L T − 1
[ acceleration ] = L T − 2 [\textrm{acceleration}] = LT^{-2} [ acceleration ] = L T − 2
[ momentum ] = [ mass × velocity ] = M L T − 1 [\textrm{momentum}] = [\textrm{mass} \times \textrm{velocity}] = MLT^{-1} [ momentum ] = [ mass × velocity ] = M L T − 1
F g = G m 1 m 2 r 2 F_g = \frac{G m_1 m_2}{r^2}
F g = r 2 G m 1 m 2
G = F g r 2 m 1 m 2 G = \frac{F_g r^2}{m_1 m_2}
G = m 1 m 2 F g r 2
G G G small, that’s why a large mass necessary to make F g F_g F g significant
useful for:
checking validity of equations
finding expressions for physical qualities
not useful for dimensionless constants.
Vectors
Vectors change under transformation of coordinate systems. Scalars do not.
Examples
Notation
A ⃗ = A a ^ \vec A = A \hat a A = A a ^
∣ A ⃗ ∣ = A |\vec A| = A ∣ A ∣ = A
Translation doesn’t change vectors
Physical laws can be written as relationships between geometric quantities (vectors) in Newtonian Mechanics.
Unit vectors, vector components
Unit/base vectors:
x ^ \hat x x ^ , y ^ \hat y y ^ , z ^ \hat z z ^
i ^ \hat i i ^ , j ^ \hat j j ^ , k ^ \hat k k ^
component form:
A ⃗ = A x i ^ + A y j ^ + A z k ^ \vec A = A_x \hat i + A_y \hat j + A_z \hat k A = A x i ^ + A y j ^ + A z k ^
When coord system changed, unit vectors and components change such that the vector itself is unchanged .
Multiplication by a scalar
Vector Addition
Head-to-tail, tail-to-other-head
Subtraction: flip subtrahend, add.
Geometrically, but also component-wise.
Properties
Vector Multiplication
Dot product
A ⃗ ⋅ B ⃗ = A B cos θ \vec A \cdot \vec B = AB \cos \theta A ⋅ B = A B cos θ
independent of coordinate system
projection of A ⃗ \vec A A | B ⃗ \vec B B in the direction of B ^ \hat B B ^ | A ^ \hat A A ^ multiplied by the magnitude of B ⃗ \vec B B | A ⃗ \vec A A
Cartesian coordinates:
A ⃗ = A x i ^ + A y j ^ + A z k ^ \vec A = A_x \hat i + A_y \hat j + A_z \hat k
A = A x i ^ + A y j ^ + A z k ^
B ⃗ = B x i ^ + B y j ^ + B z k ^ \vec B = B_x \hat i + B_y \hat j + B_z \hat k
B = B x i ^ + B y j ^ + B z k ^
\vec A \cdot \vec B = A_x B_x + A_y B_y + A_z B_z$$ [^3]
[^3]: $\hat i \times \hat i = 1$, $\hat j \times \hat j = 1$, $\hat k \times \hat k = 1$
#### Cross product
$$\vec A \times \vec B = AB \sin \theta \hat c
c ^ \hat c c ^ perpendicular to the plane spanned by A ⃗ \vec A A and B ⃗ \vec B B in the direction of the right hand rule .
independent of coordinate system
Magnitude of cross product: area of the parallelogram spanned by A A A and B B B
A ⃗ × B ⃗ = − B ⃗ × A ⃗ \vec A \times \vec B = -\vec B \times \vec A
A × B = − B × A
Cartesian coordinates:
A ⃗ × B ⃗ = ∣ i ^ j ^ k ^ A x A y A z B x B y B z ∣ \vec A \times \vec B = \left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k}\\ A_{x} & A_{y} & A_{z}\\ B_{x} & B_{y} & B_{z} \end{array}\right|
A × B = ∣ ∣ ∣ ∣ ∣ ∣ ∣ i ^ A x B x j ^ A y B y k ^ A z B z ∣ ∣ ∣ ∣ ∣ ∣ ∣
Vector differentiation
r ⃗ ( t ) = x ( t ) i ^ \vec r (t) = x(t) \hat i r ( t ) = x ( t ) i ^
d r ⃗ ( t ) d t = d x ( t ) d t i ^ \frac{d \vec r (t)}{dt} = \frac{d x (t)}{dt} \hat i d t d r ( t ) = d t d x ( t ) i ^
Geometrically, rate of change of r ( t + δ ) − r ( t ) r(t + \delta) - r(t) r ( t + δ ) − r ( t ) .
Notation: d A ⃗ d t = A ⃗ ˙ \frac{d \vec A}{dt} = \dot{\vec A} d t d A = A ˙
Properties
Same as properties of regular differentiation, except order matters wherever vectors/vector_derivatives are multiplied.
If d A ⃗ d t ⊥ A ⃗ \frac{d \vec A}{dt} \perp \vec A d t d A ⊥ A , then ∣ A ⃗ ∣ |\vec A| ∣ A ∣ is a constant.
If vector perpendicular to time-der, but time-der != 0, it’s just rotating with the same magnitude.
General kinematic equations
v ⃗ ˙ ( t ) = a ⃗ ( t ) \dot{\vec v} (t) = \vec a (t) v ˙ ( t ) = a ( t )
v ⃗ ( t ) = v ⃗ ( t 0 ) + ∫ t 0 t a ⃗ ( t ′ ) d t \vec v (t) = \vec v (t_0) + \int_{t_0}^{t} \vec a(t') dt v ( t ) = v ( t 0 ) + ∫ t 0 t a ( t ′ ) d t
r ⃗ = r cos θ i ^ + r sin θ j ^ \vec r = r\cos \theta \hat i + r\sin \theta \hat j r = r cos θ i ^ + r sin θ j ^
r ⃗ ( t ) = r cos ω t i ^ + r sin ω t j ^ \vec r (t) = r\cos \omega t \hat i + r\sin \omega t \hat j r ( t ) = r cos ω t i ^ + r sin ω t j ^
v ( t ) = − r ω sin ω t i ^ + r ω cos ω t j ^ v(t) = -r \omega \sin \omega t \hat i + r \omega \cos \omega t \hat j v ( t ) = − r ω sin ω t i ^ + r ω cos ω t j ^
∣ v ∣ = v = v ⋅ v = r ω |v| = v = \sqrt{v \cdot v} = r \omega ∣ v ∣ = v = v ⋅ v = r ω
r ⋅ v = 0 r \cdot v = 0 r ⋅ v = 0 (r r r is perpendicular to v v v )
Period ζ = C v = 2 π r v = 2 π ω \zeta = \frac{C}{v} = \frac{2 \pi r}{v} = \frac{2\pi}{\omega} ζ = v C = v 2 π r = ω 2 π
a ⃗ = − r ω 2 cos ω t i ^ − r ω 2 sin ω t j ^ = − ω 2 r r ^ \vec a = - r \omega^2 \cos \omega t \hat i - r \omega^2 \sin \omega t \hat j = - \omega^2 r \hat r a = − r ω 2 cos ω t i ^ − r ω 2 sin ω t j ^ = − ω 2 r r ^
∣ a ⃗ ∣ = r 2 ω 4 cos 2 ω t + r 2 ω 4 sin 2 ω t = r ω 2 1 = r ω 2 |\vec a| = \sqrt{r^2 \omega^4 \cos^2 \omega t + r^2 \omega ^4 \sin^2 \omega t} = r \omega^2 \sqrt{1} = r \omega^2 ∣ a ∣ = r 2 ω 4 cos 2 ω t + r 2 ω 4 sin 2 ω t = r ω 2 1 = r ω 2
Circular (and other) motion is sometimes better described using polar coordinates .
r r r : distance from origin
θ \theta θ : angle from the x x x axis
Cartesian
Polar
x = r cos θ x = r \cos \theta x = r cos θ
r = x 2 + y 2 r = \sqrt{x^2 + y^2} r = x 2 + y 2
y = r sin θ y = r \sin \theta y = r sin θ
θ = tan − 1 y x \theta = \tan^{-1} \frac{y}{x} θ = tan − 1 x y
Intersecting horizontal and vertical lines
Concentric circles and radial rays from the origin
i ^ \hat i i ^ and j ^ \hat j j ^ are same at every point
r ^ \hat r r ^ and θ ^ \hat \theta θ ^ change direction from point to point
r ^ = cos θ i ^ + sin θ j ^ \hat r = \cos \theta \hat i + \sin \theta \hat j r ^ = cos θ i ^ + sin θ j ^
θ ^ = − sin θ i ^ + cos θ j ^ \hat \theta = - \sin \theta \hat i + \cos \theta \hat j θ ^ = − sin θ i ^ + cos θ j ^
Unit vectors point along the coordinate lines. Move from one coordinate line to the next.
r ^ ˙ = − θ ˙ sin θ i ^ + θ ˙ cos θ j ^ = θ ˙ θ ^ \dot{\hat r} = - \dot{\theta} \sin \theta \hat i + \dot{\theta} \cos \theta \hat j = \dot{\theta} \hat \theta r ^ ˙ = − θ ˙ sin θ i ^ + θ ˙ cos θ j ^ = θ ˙ θ ^
θ ^ ˙ = − θ ˙ r ^ \dot{\hat \theta} = - \dot{\theta} \hat r θ ^ ˙ = − θ ˙ r ^
change in r ^ \hat r r ^ is along θ ^ \hat \theta θ ^ and vice-versa
Generally:
r ⃗ = r r ^ \vec r = r \hat r r = r r ^
v ⃗ = r ⃗ ˙ = r ˙ r ^ + r r ^ ˙ = r ˙ r ^ + r θ ˙ θ ^ \vec v = \dot{\vec r} = \dot{r} \hat r + r \dot{\hat r} = \dot{r} \hat r + r \dot{\theta} \hat \theta v = r ˙ = r ˙ r ^ + r r ^ ˙ = r ˙ r ^ + r θ ˙ θ ^
\vec a = \dot{\vec v} = (\dot\dot - r \dot \theta^2) \hat r + (2 \dot r \dot \theta + r \dot \dot) \hat \theta
UCM: r = c o n s t r = const r = c o n s t , θ = ω t \theta = \omega t θ = ω t , θ ˙ = ω \dot{\theta} = \omega θ ˙ = ω
r ⃗ = r r ^ \vec r = r \hat r r = r r ^
v ⃗ = r ω θ ^ \vec v = r \omega \hat \theta v = r ω θ ^
a ⃗ = − r ω 2 r ^ \vec a = - r \omega^2 \hat r a = − r ω 2 r ^
in polar coords, on parallel transporting, vector remains the same but components and unit vectors change.
Translate to origin: only radial components
2 r ˙ θ ˙ θ ^ 2 \dot{r} \dot{\theta} \hat \theta 2 r ˙ θ ˙ θ ^ is non-zero only if trajectory is neither radial nor circular
Newton’s Laws
particle : an object whose size can be neglected when describing its motion
isolated particle : a particle free from the influence of interactions with other particles
gravitational
electromagnetic
Reference frames
Newton’s laws hold only for inertial reference frames.
Newton’s first law
Inertial reference frames exist
Inertial reference frame: frames of reference where a particle free from external forces moves with a constant velocity
An accelerated frame of reference is a non-inertial reference frame. In non-inertial frames, we introduce fictitious/pseudo forces so that Newton’s laws apply
Frames moving with a constant v v v wrt an inertial frame are also inertial
Earth is only approximately an inertial frame
Newton’s second law
The rate of change of momentum of a particle is equal to the external, real, unbalanced force acting on it.
F ⃗ = d p ⃗ d t = m a ⃗ \vec F = \frac{d \vec p}{dt} = m\vec a F = d t d p = m a
Newton’s third law
r ⃗ ˙ ˙ = g ⃗ = − g k ^ \dot{\dot{\vec r}} = \vec g = - g \hat k r ˙ ˙ = g = − g k ^
z ˙ ˙ ( t ) = − g \dot{\dot{z}}(t) = -g z ˙ ˙ ( t ) = − g
z ( t ) = z 0 + v z 0 t − 1 2 g t 2 z(t) = z_0 + v_{z_0} t - \frac {1}{2}gt^2 z ( t ) = z 0 + v z 0 t − 2 1 g t 2
Phenomenological forces
Normal force : A contact force exerted by a surface on a body. always ⊥ \perp ⊥ to the surface. EM force arising from the pushback from compressed atoms.
Friction arises from contact between surfaces. Arises from attractive forces between subatomic particles.
F f ≈ μ N F_f \approx \mu N F f ≈ μ N
μ \mu μ is the coefficient of static friction . usually < 1 < 1 < 1 . dimensionless.
0 < F f < N 0 < F_f < N 0 < F f < N
Centripetal acceleration
acceleration towards the center. caused by tension (resistance to stretching of atoms)
F ⃗ = − T r ^ \vec F = -T \hat r F = − T r ^ (T is the tension in the rope)
a ⃗ = − ω 2 l r ^ \vec a = - \omega^2 l \hat r a = − ω 2 l r ^
F ⃗ = m a ⃗ ⟹ T = m ω 2 l r ^ \vec F = m\vec a \implies T = m \omega^2 l \hat r F = m a ⟹ T = m ω 2 l r ^
Geostationary orbit
Uniform circular motion
T = 2 π ω = 24 h T=\frac{2\pi}{\omega} = 24h T = ω 2 π = 2 4 h
What is r r r in terms of R E R_E R E for the orbit to be geostationary?
F g F_g F g with gravity formula. F g = m s a F_g = m_sa F g = m s a , a a a in terms of ω \omega ω and r r r . Equate, simplify. Plug in ω \omega ω in terms of 24 h 24h 2 4 h .
Whirling rope
UCM.
What is the tension in terms of the radius?
Derive a diffeq in terms of the distance from the origin.
Element δ r \delta r δ r of the rope.
total tension = mass of element * acceleration
Pulleys
Drag forces
Act to oppose motion of a solid object through a fluid (e.g. air, water). arises from the third law. EM.
fluid resistance.
Depends on:
size/shape of the object
speed of the object relative to the fluid
microscopic properties of the fluid
F drag = − f ( v ) v ^ F_{\textrm{drag}} = -f(v) \hat v F drag = − f ( v ) v ^
at low speeds, f ( v ) ∝ v f(v) \propto v f ( v ) ∝ v
laminar flow.
at high speeds, f ( v ) ∝ v 2 f(v) \propto v^2 f ( v ) ∝ v 2
turbulent flow.
Simple harmonic motion
massless spring
neglect friction
x x x is measured from equilibrium position
Hooke’s law.
F ⃗ = − k x x ^ \vec F = -kx \hat x F = − k x x ^ (linear restoring force)
if x > 0 x>0 x > 0 , spring is stretched. F ⃗ \vec F F pulls back towards x = 0 x = 0 x = 0
if x < 0 x < 0 x < 0 , spring is compressed. F ⃗ \vec F F pushes towards x = 0 x = 0 x = 0
x ˙ ˙ + k m x = 0 \dot{\dot{x}}+\frac{k}{m} x = 0 x ˙ ˙ + m k x = 0
x = B cos ( ω 0 t ) + C sin ( ω 0 t ) = A cos ( ω 0 t + ϕ ) x = B\cos(\omega_0 t) + C\sin(\omega_0 t) = A\cos(\omega_0t+\phi) x = B cos ( ω 0 t ) + C sin ( ω 0 t ) = A cos ( ω 0 t + ϕ )
ω 0 2 = k m \omega_0^2 = \frac{k}{m} ω 0 2 = m k
projection of uniform circular motion
Gravity
force on m 1 m_1 m 1 due to m 2 m_2 m 2 : $\vec F_{21} = -\frac{Gm_1 m_2}{r^2} \hat r $
shell theorem:
outside the shell: F ⃗ m = − G M m r 2 r ^ \vec F_{m} = -\frac{GM m}{r^2} \hat r F m = − r 2 G M m r ^
inside the shell: F ⃗ m = 0 \vec F_m = 0 F m = 0 (coz only the stuff outside the shell affects)
ball theorem:
outside: − G M m r 2 r ^ -\frac{GMm}{r^2}\hat r − r 2 G M m r ^
inside (only the mass inside affects you): − G M m r 2 ( r 3 R 3 ) r ^ -\frac{GMm}{r^2}\left(\frac{r^3}{R^3}\right) \hat r − r 2 G M m ( R 3 r 3 ) r ^
Momentum
Per Newton’s 3rd law, f ⃗ 12 = − f ⃗ 21 \vec f_{12} = - \vec f_{21} f 1 2 = − f 2 1
m_1 r_1 … = f_12 and m_2 r_2 … = f_21
For particles interacting with each other but isolated from everything else,
total momentum P ⃗ \vec {\mathbb{P}} P vector conserved for isolated systems. d P d t = 0 \frac{dP}{dt} = 0 d t d P = 0
Not isolated: d P d t = F e x t \frac{dP}{dt} = F_{ext} d t d P = F e x t
Center of mass: R = ∑ m i r i ∑ m i R = \frac{\sum m_i r_i}{\sum m_i} R = ∑ m i ∑ m i r i
M R ⃗ ′ ′ = d P ⃗ d t = F ⃗ e x t M \vec R'' = \frac{d\vec P}{dt} = \vec F_{ext} M R ′ ′ = d t d P = F e x t
The center of mass moves as if:
the entire mass of the object is concentrated at it
all the external forces are acted upon it
There may be motion around the center of mass
R = ∫ d m ′ r ⃗ ′ ∫ d m ′ = ∫ d v ′ p r ⃗ ′ ∫ d v ′ p R = \frac{\int dm' \vec r'}{\int dm'} = \frac{\int dv' p \vec r'}{\int dv' p} R = ∫ d m ′ ∫ d m ′ r ′ = ∫ d v ′ p ∫ d v ′ p r ′
2 particle system:
motion of CM
relative motion (r 1 − r 2 r_1 - r_2 r 1 − r 2 )
Impulse
∫ 0 t F ⃗ e x t d t \int_0^t \vec F_{\mathrm{ext}} dt ∫ 0 t F e x t d t
∫ 0 t F ⃗ e x t d t = ∫ 0 t d ⃗ P d t = P ⃗ ( t ) − P ⃗ ( 0 ) \int_0^t \vec F_{\mathrm{ext}} dt = \int_0^t \vec dP dt = \vec P(t) - \vec P(0) ∫ 0 t F e x t d t = ∫ 0 t d P d t = P ( t ) − P ( 0 )
Rockets
M d v ⃗ d t − u ⃗ d M d t = F ⃗ e x t M\frac{d\vec v}{dt} - \vec u \frac{dM}{dt} = \vec F_{\mathrm{ext}} M d t d v − u d t d M = F e x t
u ⃗ \vec u u is the speed of the expelled mass wrt the rocket (not wrt the inertial frame)
Energy
Conservative forces
F ⃗ ( r ⃗ ) \vec F (\vec r) F ( r ) is said to be conservative if ∫ r a r b F ⃗ ( r ⃗ ) ⋅ d r ⃗ \int_{r_a}^{r_b} \vec F(\vec r)\cdot d\vec r ∫ r a r b F ( r ) ⋅ d r is independent of the path for arb. r a r_a r a , r b r_b r b .
F ( r ) F(r) F ( r ) is conservative iff ∮ c F ( r ) ⋅ d r = 0 \oint_c F(r)\cdot dr = 0 ∮ c F ( r ) ⋅ d r = 0
Conservation of mechanical energy
potential energy : u ( r ⃗ ) = − ∫ o r ⃗ F ⃗ ( r ⃗ ) ⋅ d r ⃗ u(\vec r) = - \int_o^{\vec r} \vec F (\vec r)\cdot d\vec r u ( r ) = − ∫ o r F ( r ) ⋅ d r
possible to define iff F ⃗ ( r ⃗ ) \vec F(\vec r) F ( r ) is conservative (u u u is a function of r ⃗ \vec r r only).
mechanical energy K + U = E K + U = E K + U = E is constant as the system evolves. E E E is conserved.
only differences in E E E are meaningful
In general, for a conservative force F ⃗ ( r ⃗ ) \vec F (\vec r) F ( r ) mvoing some particle from 0 to r ⃗ \vec r r with an applied force − F ⃗ ( r ⃗ ) - \vec F (\vec r) − F ( r ) :
∫ 0 r ⃗ ( F ⃗ ( r ⃗ ) ⋅ d r ⃗ = − ∫ 0 r ⃗ F ⃗ ( r ⃗ ) ⋅ d r ⃗ = u ( r ⃗ ) \int_0^{\vec r} \left(\vec F (\vec r\right) \cdot d\vec r = - \int_0^{\vec r} \vec F (\vec r)\cdot d\vec r = u(\vec r) ∫ 0 r ( F ( r ) ⋅ d r = − ∫ 0 r F ( r ) ⋅ d r = u ( r )
F ⃗ = − ∇ u ( r ⃗ ) \vec F = -\nabla u(\vec r) F = − ∇ u ( r )
∫ a ⃗ b ⃗ F ⃗ ⋅ d r ⃗ = − ∫ a ⃗ b ⃗ ∇ u ⋅ d r ⃗ = u ( b ⃗ ) − u ( a ⃗ ) \int_{\vec a}^{\vec b} \vec F \cdot d\vec r = - \int_{\vec a}^{\vec b} \nabla u \cdot d\vec r = u(\vec b) - u(\vec a) ∫ a b F ⋅ d r = − ∫ a b ∇ u ⋅ d r = u ( b ) − u ( a )
Angular Momentum
L ⃗ = r ⃗ × p ⃗ \vec L = \vec r \times \vec p L = r × p
τ = r ⃗ × F ⃗ \tau = \vec r \times \vec F τ = r × F
τ ⃗ = d L ⃗ d t \vec \tau = \frac{d\vec L}{dt} τ = d t d L
d L ⃗ d t − τ i + τ e \frac{d\vec L}{dt} - \tau_i + \tau_e d t d L − τ i + τ e
L z = I ω L_z = I \omega L z = I ω
I = ∫ ρ 2 d m I = \int \rho^2 dm I = ∫ ρ 2 d m