Honors Mechanics 
        PHYS 111 
    
        fall, freshman year
     
    Units  Dimensions  Vectors  Examples  Notation  Unit vectors, vector components  Multiplication by a scalar  Vector Addition  Properties  Vector Multiplication  Dot product  Vector differentiation  Properties  General kinematic equations  Uniform circular motion  Newton’s Laws  Newton’s first law  Newton’s second law  Newton’s third law  Phenomenological forces  Centripetal acceleration  Geostationary orbit  Whirling rope  Pulleys  Drag forces  Simple harmonic motion  Gravity  Momentum  Impulse  Rockets  Energy  Conservative forces  Conservation of mechanical energy  Angular Momentum  Mechanics : study of a system of particles interacting with each other and/or the environment.
Newtonian mechanics applicable  when:
things not too fast (compared to c c c  )
v c ≪ 1 \frac{v}{c} \ll 1 c v  ≪ 1  
 
 
things not too small (compared to λ d b \lambda_{db} λ d b    )
L λ d b ≫ 1 \frac{L}{\lambda_{db}} \gg 1 λ d b  L  ≫ 1  
 
 
gravity not too strong
G M L c 2 ≪ 1 \frac{GM}{Lc^2} \ll 1 L c 2 G M  ≪ 1  
 
 
 
space
3-dimensional : 3 coordinates necessary to specify the position of a particle 
euclidean : euclid’s axioms satisfied 
 
 
time
universal time : time runs the same way for all bodies regardless of their properties 
 
 
 
Units  
We describe the magnitude of physical quantities using standard units .
Dimensions  
Combinations of powers of length, mass, time.
[ length ] = L [\textrm{length}] = L [ length ] = L  
[ velocity ] = L T − 1 [\textrm{velocity}] = LT^{-1} [ velocity ] = L T − 1  
[ acceleration ] = L T − 2 [\textrm{acceleration}] = LT^{-2} [ acceleration ] = L T − 2  
[ momentum ] = [ mass × velocity ] = M L T − 1 [\textrm{momentum}] = [\textrm{mass} \times \textrm{velocity}] = MLT^{-1} [ momentum ] = [ mass × velocity ] = M L T − 1  
 
F g = G m 1 m 2 r 2 F_g = \frac{G m_1 m_2}{r^2}
 F g  = r 2 G m 1  m 2   
G = F g r 2 m 1 m 2 G = \frac{F_g r^2}{m_1 m_2}
 G = m 1  m 2  F g  r 2  
G G G   small, that’s why a large mass necessary to make F g F_g F g    significant
 
useful for:
checking validity of equations 
finding expressions for physical qualities 
 
not useful for dimensionless constants.
Vectors  
Vectors  change under transformation of coordinate systems. Scalars  do not.
Examples  
Notation  
A ⃗ = A a ^ \vec A = A \hat a A = A a ^ 
∣ A ⃗ ∣ = A |\vec A| = A ∣ A ∣ = A 
 
Translation doesn’t change vectors
Physical laws can be written as relationships between geometric quantities (vectors) in Newtonian Mechanics.
Unit vectors, vector components  
Unit/base vectors:
x ^ \hat x x ^  , y ^ \hat y y ^   , z ^ \hat z z ^  
i ^ \hat i i ^  , j ^ \hat j j ^   , k ^ \hat k k ^  
 
component form:
A ⃗ = A x i ^ + A y j ^ + A z k ^ \vec A = A_x \hat i + A_y \hat j + A_z \hat k A = A x  i ^ + A y  j ^  + A z  k ^ 
When coord system changed, unit vectors and components change  such that the vector itself is unchanged .
Multiplication by a scalar  
Vector Addition  
Head-to-tail, tail-to-other-head
Subtraction: flip subtrahend, add.
Geometrically, but also component-wise.
Properties  
Vector Multiplication  
Dot product  
A ⃗ ⋅ B ⃗ = A B cos  θ \vec A \cdot \vec B = AB \cos \theta A ⋅ B = A B cos θ 
independent of coordinate system
 
projection of A ⃗ \vec A A   | B ⃗ \vec B B   in the direction of B ^ \hat B B ^   | A ^ \hat A A ^   multiplied by the magnitude of B ⃗ \vec B B   | A ⃗ \vec A A 
 
Cartesian coordinates:
A ⃗ = A x i ^ + A y j ^ + A z k ^ \vec A = A_x \hat i + A_y \hat j + A_z \hat k
 A = A x  i ^ + A y  j ^  + A z  k ^ 
B ⃗ = B x i ^ + B y j ^ + B z k ^ \vec B = B_x \hat i + B_y \hat j + B_z \hat k
 B = B x  i ^ + B y  j ^  + B z  k ^ 
\vec A \cdot \vec B = A_x B_x + A_y B_y + A_z B_z$$ [^3]
[^3]: $\hat i \times \hat i = 1$, $\hat j \times \hat j = 1$, $\hat k \times \hat k = 1$
#### Cross product
$$\vec A \times \vec B = AB \sin \theta \hat c
c ^ \hat c c ^   perpendicular to the plane spanned by A ⃗ \vec A A   and B ⃗ \vec B B   in the direction of the right hand rule .
independent of coordinate system
 
Magnitude of cross product: area of the parallelogram spanned by A A A   and B B B 
A ⃗ × B ⃗ = − B ⃗ × A ⃗ \vec A \times \vec B = -\vec B \times \vec A
 A × B = − B × A 
Cartesian coordinates:
A ⃗ × B ⃗ = ∣ i ^ j ^ k ^ A x A y A z B x B y B z ∣ \vec A \times \vec B = \left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k}\\ A_{x} & A_{y} & A_{z}\\ B_{x} & B_{y} & B_{z} \end{array}\right| 
 A × B = ∣ ∣ ∣ ∣ ∣ ∣ ∣  i ^ A x  B x   j ^  A y  B y   k ^ A z  B z   ∣ ∣ ∣ ∣ ∣ ∣ ∣  
Vector differentiation  
r ⃗ ( t ) = x ( t ) i ^ \vec r (t) = x(t) \hat i r ( t ) = x ( t ) i ^ 
d r ⃗ ( t ) d t = d x ( t ) d t i ^ \frac{d \vec r (t)}{dt} = \frac{d x (t)}{dt} \hat i d t d r ( t )  = d t d x ( t )  i ^ 
Geometrically, rate of change of r ( t + δ ) − r ( t ) r(t + \delta) - r(t) r ( t + δ ) − r ( t )  .
Notation: d A ⃗ d t = A ⃗ ˙ \frac{d \vec A}{dt} = \dot{\vec A} d t d A  = A ˙ 
Properties  
Same as properties of regular differentiation, except order matters wherever vectors/vector_derivatives are multiplied.
If d A ⃗ d t ⊥ A ⃗ \frac{d \vec A}{dt} \perp \vec A d t d A  ⊥ A  , then ∣ A ⃗ ∣ |\vec A| ∣ A ∣   is a constant.
 
If vector perpendicular to time-der, but time-der != 0, it’s just rotating with the same magnitude.
General kinematic equations  
v ⃗ ˙ ( t ) = a ⃗ ( t ) \dot{\vec v} (t) = \vec a (t) v ˙ ( t ) = a ( t ) 
v ⃗ ( t ) = v ⃗ ( t 0 ) + ∫ t 0 t a ⃗ ( t ′ ) d t \vec v (t) = \vec v (t_0) + \int_{t_0}^{t} \vec a(t') dt v ( t ) = v ( t 0  ) + ∫ t 0  t  a ( t ′ ) d t 
r ⃗ = r cos  θ i ^ + r sin  θ j ^ \vec r = r\cos \theta \hat i + r\sin \theta \hat j r = r cos θ i ^ + r sin θ j ^  
r ⃗ ( t ) = r cos  ω t i ^ + r sin  ω t j ^ \vec r (t) = r\cos \omega t \hat i + r\sin \omega t \hat j r ( t ) = r cos ω t i ^ + r sin ω t j ^  
v ( t ) = − r ω sin  ω t i ^ + r ω cos  ω t j ^ v(t) = -r \omega \sin \omega t \hat i + r \omega \cos \omega t \hat j v ( t ) = − r ω sin ω t i ^ + r ω cos ω t j ^  
∣ v ∣ = v = v ⋅ v = r ω |v| = v = \sqrt{v \cdot v} = r \omega ∣ v ∣ = v = v ⋅ v  = r ω 
r ⋅ v = 0 r \cdot v = 0 r ⋅ v = 0   (r r r   is perpendicular to v v v  )
Period ζ = C v = 2 π r v = 2 π ω \zeta = \frac{C}{v} = \frac{2 \pi r}{v} = \frac{2\pi}{\omega} ζ = v C  = v 2 π r  = ω 2 π  
a ⃗ = − r ω 2 cos  ω t i ^ − r ω 2 sin  ω t j ^ = − ω 2 r r ^ \vec a = - r \omega^2 \cos \omega t \hat i - r \omega^2 \sin \omega t \hat j = - \omega^2 r \hat r a = − r ω 2 cos ω t i ^ − r ω 2 sin ω t j ^  = − ω 2 r r ^ 
∣ a ⃗ ∣ = r 2 ω 4 cos  2 ω t + r 2 ω 4 sin  2 ω t = r ω 2 1 = r ω 2 |\vec a| = \sqrt{r^2 \omega^4 \cos^2 \omega t + r^2 \omega ^4 \sin^2 \omega t} = r \omega^2 \sqrt{1} = r \omega^2 ∣ a ∣ = r 2 ω 4 cos 2 ω t + r 2 ω 4 sin 2 ω t  = r ω 2 1  = r ω 2 
Circular (and other) motion is sometimes better described using polar coordinates .
r r r  : distance from origin 
θ \theta θ  : angle from the x x x   axis 
 
Cartesian 
Polar 
 
 
x = r cos  θ x = r \cos \theta x = r cos θ  
r = x 2 + y 2 r = \sqrt{x^2 + y^2} r = x 2 + y 2   
 
y = r sin  θ y = r \sin \theta y = r sin θ  
θ = tan  − 1 y x \theta = \tan^{-1} \frac{y}{x} θ = tan − 1 x y   
 
Intersecting horizontal and vertical lines 
Concentric circles and radial rays from the origin 
 
i ^ \hat i i ^   and j ^ \hat j j ^    are same at every point 
r ^ \hat r r ^   and θ ^ \hat \theta θ ^   change direction from point to point 
 
 
r ^ = cos  θ i ^ + sin  θ j ^ \hat r = \cos \theta \hat i + \sin \theta \hat j r ^ = cos θ i ^ + sin θ j ^   
 
 
θ ^ = − sin  θ i ^ + cos  θ j ^ \hat \theta = - \sin \theta \hat i + \cos \theta \hat j θ ^ = − sin θ i ^ + cos θ j ^   
 
 
Unit vectors point along the coordinate lines. Move from one coordinate line to the next.
 
r ^ ˙ = − θ ˙ sin  θ i ^ + θ ˙ cos  θ j ^ = θ ˙ θ ^ \dot{\hat r} = - \dot{\theta} \sin \theta \hat i + \dot{\theta} \cos \theta \hat j = \dot{\theta} \hat \theta r ^ ˙ = − θ ˙ sin θ i ^ + θ ˙ cos θ j ^  = θ ˙ θ ^ 
θ ^ ˙ = − θ ˙ r ^ \dot{\hat \theta} = - \dot{\theta} \hat r θ ^ ˙ = − θ ˙ r ^ 
change in r ^ \hat r r ^   is along θ ^ \hat \theta θ ^   and vice-versa
 
Generally:
r ⃗ = r r ^ \vec r = r \hat r r = r r ^ 
v ⃗ = r ⃗ ˙ = r ˙ r ^ + r r ^ ˙ = r ˙ r ^ + r θ ˙ θ ^ \vec v = \dot{\vec r} = \dot{r} \hat r + r \dot{\hat r} = \dot{r} \hat r + r \dot{\theta} \hat \theta v = r ˙ = r ˙ r ^ + r r ^ ˙ = r ˙ r ^ + r θ ˙ θ ^ 
\vec a = \dot{\vec v} = (\dot\dot - r \dot \theta^2) \hat r + (2 \dot r \dot \theta + r \dot \dot) \hat \theta 
UCM: r = c o n s t r = const r = c o n s t  , θ = ω t \theta = \omega t θ = ω t  , θ ˙ = ω \dot{\theta} = \omega θ ˙ = ω 
r ⃗ = r r ^ \vec r = r \hat r r = r r ^ 
v ⃗ = r ω θ ^ \vec v = r \omega \hat \theta v = r ω θ ^ 
a ⃗ = − r ω 2 r ^ \vec a = - r \omega^2 \hat r a = − r ω 2 r ^ 
in polar coords, on parallel transporting, vector remains the same but components  and unit vectors  change.
Translate to origin: only radial components
2 r ˙ θ ˙ θ ^ 2 \dot{r} \dot{\theta} \hat \theta 2 r ˙ θ ˙ θ ^   is non-zero only if trajectory is neither radial nor circular
Newton’s Laws  
particle : an object whose size can be neglected when describing its motion
isolated particle : a particle free from the influence of interactions with other particles
gravitational 
electromagnetic 
 
Reference frames 
Newton’s laws hold only for inertial reference frames.
Newton’s first law  
Inertial reference frames exist
 
Inertial  reference frame: frames of reference where a particle free from external forces moves with a constant velocity
An accelerated frame of reference is a non-inertial  reference frame. In non-inertial frames, we introduce fictitious/pseudo forces so that Newton’s laws apply
Frames moving with a constant v v v   wrt an inertial frame are also inertial
Earth is only approximately an inertial frame
Newton’s second law  
The rate of change of momentum of a particle is equal to the external, real, unbalanced force acting on it.
F ⃗ = d p ⃗ d t = m a ⃗ \vec F = \frac{d \vec p}{dt} = m\vec a F = d t d p   = m a 
Newton’s third law  
r ⃗ ˙ ˙ = g ⃗ = − g k ^ \dot{\dot{\vec r}} = \vec g = - g \hat k r ˙ ˙ = g  = − g k ^ 
z ˙ ˙ ( t ) = − g \dot{\dot{z}}(t) = -g z ˙ ˙ ( t ) = − g 
z ( t ) = z 0 + v z 0 t − 1 2 g t 2 z(t) = z_0 + v_{z_0} t - \frac {1}{2}gt^2 z ( t ) = z 0  + v z 0   t − 2 1  g t 2 
 
Phenomenological forces  
Normal force : A contact force exerted by a surface on a body. always ⊥ \perp ⊥   to the surface. EM force arising from the pushback from compressed atoms.
Friction  arises from contact between surfaces. Arises from attractive forces between subatomic particles.
F f ≈ μ N F_f \approx \mu N F f  ≈ μ N 
μ \mu μ   is the coefficient of static friction . usually < 1 < 1 < 1  . dimensionless.
0 < F f < N 0 < F_f < N 0 < F f  < N 
Centripetal acceleration  
acceleration towards the center. caused by tension  (resistance to stretching of atoms)
F ⃗ = − T r ^ \vec F = -T \hat r F = − T r ^   (T is the tension in the rope)
a ⃗ = − ω 2 l r ^ \vec a = - \omega^2 l \hat r a = − ω 2 l r ^ 
F ⃗ = m a ⃗    ⟹    T = m ω 2 l r ^ \vec F = m\vec a \implies T = m \omega^2 l \hat r F = m a ⟹ T = m ω 2 l r ^ 
Geostationary orbit  
Uniform circular motion
T = 2 π ω = 24 h T=\frac{2\pi}{\omega} = 24h T = ω 2 π  = 2 4 h 
What is r r r   in terms of R E R_E R E    for the orbit to be geostationary?
 
F g F_g F g    with gravity formula. F g = m s a F_g = m_sa F g  = m s  a  , a a a   in terms of ω \omega ω   and r r r  . Equate, simplify. Plug in ω \omega ω   in terms of 24 h 24h 2 4 h  .
Whirling rope  
UCM.
What is the tension  in terms of the radius?
 
Derive a diffeq in terms of the distance from the origin.
Element δ r \delta r δ r   of the rope.
total tension = mass of element * acceleration
Pulleys  
Drag forces  
Act to oppose motion of a solid object through a fluid (e.g. air, water). arises from the third law. EM.
fluid resistance.
Depends on:
size/shape  of the object 
speed  of the object relative to the fluid 
microscopic properties of the fluid  
 
F drag = − f ( v ) v ^ F_{\textrm{drag}} = -f(v) \hat v F drag  = − f ( v ) v ^ 
at low speeds, f ( v ) ∝ v f(v) \propto v f ( v ) ∝ v 
laminar flow.
 
at high speeds, f ( v ) ∝ v 2 f(v) \propto v^2 f ( v ) ∝ v 2 
turbulent flow.
 
 
Simple harmonic motion  
massless spring 
neglect friction 
x x x   is measured from equilibrium position 
 
Hooke’s law.
F ⃗ = − k x x ^ \vec F = -kx \hat x F = − k x x ^   (linear restoring force)
if x > 0 x>0 x > 0  , spring is stretched. F ⃗ \vec F F   pulls back towards x = 0 x = 0 x = 0 
if x < 0 x < 0 x < 0  , spring is compressed. F ⃗ \vec F F   pushes towards x = 0 x = 0 x = 0 
x ˙ ˙ + k m x = 0 \dot{\dot{x}}+\frac{k}{m} x = 0 x ˙ ˙ + m k  x = 0 
x = B cos  ( ω 0 t ) + C sin  ( ω 0 t ) = A cos  ( ω 0 t + ϕ ) x = B\cos(\omega_0 t) + C\sin(\omega_0 t) = A\cos(\omega_0t+\phi) x = B cos ( ω 0  t ) + C sin ( ω 0  t ) = A cos ( ω 0  t + ϕ ) 
ω 0 2 = k m \omega_0^2 = \frac{k}{m} ω 0 2  = m k  
projection of uniform circular motion
Gravity  
force on m 1 m_1 m 1    due to m 2 m_2 m 2   : $\vec F_{21} = -\frac{Gm_1 m_2}{r^2} \hat r $
shell theorem:
outside the shell: F ⃗ m = − G M m r 2 r ^ \vec F_{m} = -\frac{GM m}{r^2} \hat r F m  = − r 2 G M m  r ^  
inside the shell: F ⃗ m = 0 \vec F_m = 0 F m  = 0   (coz only the stuff outside the shell affects) 
 
ball theorem:
outside: − G M m r 2 r ^ -\frac{GMm}{r^2}\hat r − r 2 G M m  r ^  
inside (only the mass inside affects you): − G M m r 2 ( r 3 R 3 ) r ^ -\frac{GMm}{r^2}\left(\frac{r^3}{R^3}\right) \hat r − r 2 G M m  ( R 3 r 3  ) r ^  
 
Momentum  
Per Newton’s 3rd law, f ⃗ 12 = − f ⃗ 21 \vec f_{12} = - \vec f_{21} f  1 2  = − f  2 1   
m_1 r_1 … = f_12 and m_2 r_2 … = f_21
For particles interacting with each other but isolated  from everything else,
total momentum P ⃗ \vec {\mathbb{P}} P   vector conserved for isolated systems. d P d t = 0 \frac{dP}{dt} = 0 d t d P  = 0 
Not isolated: d P d t = F e x t \frac{dP}{dt} = F_{ext} d t d P  = F e x t  
Center of mass: R = ∑ m i r i ∑ m i R = \frac{\sum m_i r_i}{\sum m_i} R = ∑ m i  ∑ m i  r i   
M R ⃗ ′ ′ = d P ⃗ d t = F ⃗ e x t M \vec R'' = \frac{d\vec P}{dt} = \vec F_{ext} M R ′ ′ = d t d P  = F e x t  
The center of mass  moves as if:
the entire mass of the object is concentrated at it 
all the external forces are acted upon it 
 
There may be motion around  the center of mass
R = ∫ d m ′ r ⃗ ′ ∫ d m ′ = ∫ d v ′ p r ⃗ ′ ∫ d v ′ p R = \frac{\int dm' \vec r'}{\int dm'} = \frac{\int dv' p \vec r'}{\int dv' p} R = ∫ d m ′ ∫ d m ′ r ′  = ∫ d v ′ p ∫ d v ′ p r ′  
2 particle system:
motion of CM 
relative motion (r 1 − r 2 r_1 - r_2 r 1  − r 2   ) 
 
Impulse  
∫ 0 t F ⃗ e x t d t \int_0^t \vec F_{\mathrm{ext}} dt ∫ 0 t  F e x t  d t 
∫ 0 t F ⃗ e x t d t = ∫ 0 t d ⃗ P d t = P ⃗ ( t ) − P ⃗ ( 0 ) \int_0^t \vec F_{\mathrm{ext}} dt = \int_0^t \vec dP dt = \vec P(t) - \vec P(0) ∫ 0 t  F e x t  d t = ∫ 0 t  d P d t = P ( t ) − P ( 0 ) 
Rockets  
M d v ⃗ d t − u ⃗ d M d t = F ⃗ e x t M\frac{d\vec v}{dt} - \vec u \frac{dM}{dt} = \vec F_{\mathrm{ext}} M d t d v  − u d t d M  = F e x t  
u ⃗ \vec u u   is the speed of the expelled mass wrt the rocket (not wrt the inertial frame)
Energy  
Conservative forces  
F ⃗ ( r ⃗ ) \vec F (\vec r) F ( r )   is said to be conservative  if ∫ r a r b F ⃗ ( r ⃗ ) ⋅ d r ⃗ \int_{r_a}^{r_b} \vec F(\vec r)\cdot d\vec r ∫ r a  r b   F ( r ) ⋅ d r   is independent of the path for arb. r a r_a r a   , r b r_b r b   .
F ( r ) F(r) F ( r )   is conservative iff ∮ c F ( r ) ⋅ d r = 0 \oint_c F(r)\cdot dr = 0 ∮ c  F ( r ) ⋅ d r = 0 
Conservation of mechanical energy  
potential energy : u ( r ⃗ ) = − ∫ o r ⃗ F ⃗ ( r ⃗ ) ⋅ d r ⃗ u(\vec r) = - \int_o^{\vec r} \vec F (\vec r)\cdot d\vec r u ( r ) = − ∫ o r  F ( r ) ⋅ d r 
possible to define iff F ⃗ ( r ⃗ ) \vec F(\vec r) F ( r )   is conservative (u u u   is a function of r ⃗ \vec r r   only).
mechanical energy K + U = E K + U = E K + U = E   is constant as the system evolves. E E E   is conserved.
only differences in E E E   are meaningful
 
 
In general, for a conservative force F ⃗ ( r ⃗ ) \vec F (\vec r) F ( r )   mvoing some particle from 0 to r ⃗ \vec r r   with an applied force − F ⃗ ( r ⃗ ) - \vec F (\vec r) − F ( r )  :
∫ 0 r ⃗ ( F ⃗ ( r ⃗ ) ⋅ d r ⃗ = − ∫ 0 r ⃗ F ⃗ ( r ⃗ ) ⋅ d r ⃗ = u ( r ⃗ ) \int_0^{\vec r} \left(\vec F (\vec r\right) \cdot d\vec r = - \int_0^{\vec r} \vec F (\vec r)\cdot d\vec r = u(\vec r) ∫ 0 r  ( F ( r ) ⋅ d r = − ∫ 0 r  F ( r ) ⋅ d r = u ( r ) 
F ⃗ = − ∇ u ( r ⃗ ) \vec F = -\nabla u(\vec r) F = − ∇ u ( r ) 
∫ a ⃗ b ⃗ F ⃗ ⋅ d r ⃗ = − ∫ a ⃗ b ⃗ ∇ u ⋅ d r ⃗ = u ( b ⃗ ) − u ( a ⃗ ) \int_{\vec a}^{\vec b} \vec F \cdot d\vec r = - \int_{\vec a}^{\vec b} \nabla u \cdot d\vec r = u(\vec b) - u(\vec a) ∫ a b  F ⋅ d r = − ∫ a b  ∇ u ⋅ d r = u ( b ) − u ( a ) 
Angular Momentum  
L ⃗ = r ⃗ × p ⃗ \vec L = \vec r \times \vec p L = r × p  
τ = r ⃗ × F ⃗ \tau = \vec r \times \vec F τ = r × F 
τ ⃗ = d L ⃗ d t \vec \tau = \frac{d\vec L}{dt} τ = d t d L  
d L ⃗ d t − τ i + τ e \frac{d\vec L}{dt} - \tau_i + \tau_e d t d L  − τ i  + τ e  
L z = I ω L_z = I \omega L z  = I ω 
I = ∫ ρ 2 d m I = \int \rho^2 dm I = ∫ ρ 2 d m